5) Med Sci Sports Exerc. 2018 May;50(5):1039-1045.

Postexercise Fructose-Maltodextrin Ingestion Enhances Subsequent Endurance Capacity.

Maunder E1,1Podlogar T1Wallis GA1.

Abstract

PURPOSE

Restoring skeletal muscle and hepatic glycogen content during short-term (<6 h) recovery from prolonged exercise is pertinent for athletes seeking to maximize performance in repeated exercise bouts. Previous research suggests that coingestion of fructose-glucose carbohydrate sources augments hepatic and has equivalent effects on skeletal muscle glycogen storage during short-term recovery from prolonged exercise compared with isocaloric glucose ingestion. The aim of the present investigation was to determine whether this has a discernible effect on subsequent exercise capacity.

METHODS

Eight trained endurance runners and triathletes performed two experimental trials in a single-blind, randomized, and counterbalanced crossover design. Trials involved treadmill running to exhaustion at 70% V˙O2max, a 4-h recovery with 90 g·h of glucose-maltodextrin (GLU + MAL) or fructose-maltodextrin (FRU + MAL) ingestion (1:1.5 ratio), and a second bout of treadmill running to exhaustion at 70% V˙O2max.

RESULTS

Exercise capacity in bout 2 was significantly greater with FRU + MAL (81.4 ± 22.3 vs 61.4 ± 9.6 min, P = 0.02), a large magnitude effect (effect size = 1.84 ± 1.12, 32.4% ± 19.9%). Total carbohydrate oxidation rates were not significantly different during bout 1 or 2 between trials, although total carbohydrate oxidized in bout 2 was significantly greater with FRU + MAL (223 ± 66 vs 157 ± 26 g, P = 0.02). Ingested carbohydrate oxidation rates were greater during bout 2 with FRU + MAL (P = 0.001). Plasma glucose and nonesterified fatty acid concentrations were not significantly different between trials. Plasma lactate concentrations were significantly greater during recovery before bout 2 with FRU + MAL (P = 0.001). Self-reported nausea and stomach fullness during bout 2 were marginally in favor of FRU + MAL.

CONCLUSION

Short-term recovery of endurance capacity was significantly enhanced with FRU + MAL versus GLU + MAL ingestion during recovery.