34)

Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise.

Coombes JS1McNaughton LR.

Abstract

BACKGROUND:

The aim of this study was to examine the effects of branched-chain amino acid (BCAA) supplementation on serum indicators of muscle damage after prolonged exercise. We hypothesized that BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage.

METHODS:

To test this hypothesis, sixteen male subjects were assigned to one of two groups: the supplemental group (consuming 12 g x d(-1) BCAA for 14 d in addition to their normal diet) or the control group (normal diet only). Baseline serum creatine kinase (CK) and lactate dehydrogenase (LDH), shown to be accurate indicators of muscle damage, were determined during the week before the exercise test. The exercise test was administered on day seven and required the subjects to cycle for 120 min on an ergometer at approximately 70% VO2max. Blood samples were taken prior to and immediately following exercise and at 1 hr, 2 hrs, 3 hrs, 4 hrs, 1 d, 3 d, 5 d and 7 d postexercise. All subjects were required have their diets analyzed daily during the 14 d.

RESULTS:

Dietary analyses indicated that all subjects consumed the recommended daily intake of BCAA (0.64 g x kg(-1)) in their normal diets. Baseline serum values for CK and LDH were not different between groups in the 7 d prior to the test (p>0.05). However there were significant increases (p<0.05) between the pre-exercise and postexercise values for LDH and CK until 5 d postexercise test. Importantly, the BCAA supplementation significantly reduced this change in LDH from 2hrs to 5 d posttest, and CK from 4 hrs to 5 d post-test (p<0.05).

CONCLUSIONS:

These results indicate that supplementary BCAA decreased serum concentrations of the intramuscular enzymes CK and LDH following prolonged exercise, even when the recommended intake of BCAA was being consumed. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.